
Internal  
Data Structures

The evolution of a DSL?

domain-specificgeneral-purpose

library API externalinternal

general-purpose?

discover  
nouns & verbs

add  
fluency

remove  
host flavor

tools &  
environments

features

We are here

Most general-purpose languages support these features.

Simple techniques for adding fluency

names
including Unicode

sin(Θ)	

ASK: If the DSL supports Unicode, how will the user write programs?

whitespace

computer();	
		processor();	
				cores(2);	
		disk();	
				size(150);

function
composition

computer(
		processor(
				cores(2)	
),	
		disk(
				size(150)	
)	
);

method
chaining

computer()	
		.processor()	
				.cores(2)	
		.disk()	
				.size(150)	
		.end();

Complex numbers

Is this a DSL?

real

imaginary

1 + 1i

 (a + bi) + (c + di) = (a + c) + (b + d)i

 (a + bi) * (c + di) = (ac - bd) + (ad + bc)i

Today’s goals

• Understand Scala’s building blocks for internal DSLs
• Start to recognize these building blocks in other code
• Start thinking about how to use these building blocks to

make your own internal DSLs.

These features tend to be language-specific. Some languages support this ability more than others.

Techniques for hiding the host language

(re-)defining
operators

set1	∪	set2	
set1	+	set2	

Different host languages gives us different  
amounts of control over precedence and associativity.

infix operators
set1	union	set2	 

salaries	map	giveRaise

pre- and postfix
operators

~1	
i++

literal extension 3	little	pigs

closures
i.e., by-name parameters
in Scala

test("An	empty	Set	should	have	size	0")	{	
		assert(Set.empty.size	==	0)	
}	

Useful for defining new control-flow structures

Implicit conversions
See Scala for the Impatient, Chapter 21.4

The compiler looks for an implicit conversion when:
• the expected type differs from the inferred type
• an object does not contain an expected attribute

The compiler finds an implicit conversion when:
• a conversion is declared as implicit
• a conversion is in scope and is named with a single identifier
• a conversion is defined in the current class’s companion object

The compiler does not look for an implicit conversion when:
• the code compiles without one
• the compiler has already performed one (for a given expression)
• it finds multiple conversions (i.e., conversion is ambiguous)

import scala.language.implicitConversions

:implicits [-v]

-Xprint:typer

